Topological Data Analysis

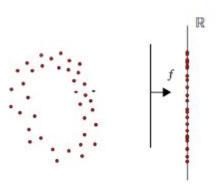
Tiffany Hu

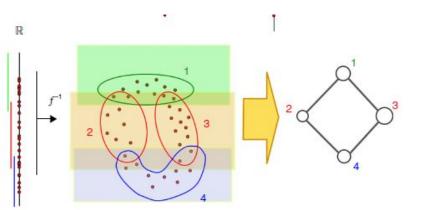
what is computational geometry?????

- geometry gives a concrete face to topological structures
 - points, connectedness
 - disk packings, sphere packings, shapes
 - triangulations, voronoi diagrams
- allows us to express spaces on a computer
 - techniques used to visualize data
 - difficult for algorithms to identify "holes"

points!!!!!

- you collect data, but you don't know the shape of the data
 - metric space with finitely many points
 - EX: finite set of genomic sequences
- translation of biological data into R^k





function f maps RNAseq point-cloud data to R^k inverse function $f^{-1}\,\text{maps}$ a covering of R^k to a covering of the point-cloud data

neighborhoods!!!!!

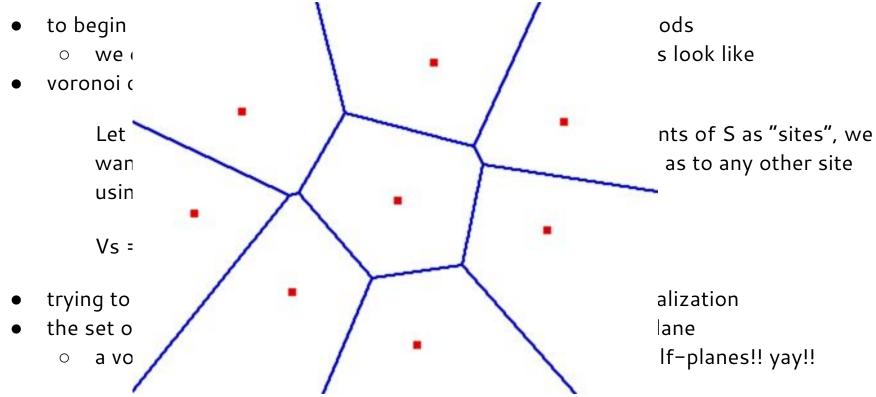
- to begin visualizing the data, we need to construct neighborhoods
 - we don't know the space of the points look like
- voronoi diagrams:

Let S be a finite set of points in R^2 . Describing the elements of S as "sites", we want to find the region of points that are at least as close as to any other site using Euclidean distance.

 $V = \{x \in \mathbb{R}^2 \mid || x - s || \le || x - t ||, \forall t \in S\}$

- trying to "scout out" the location of the points and form a visualization
- the set of points that satisfy the inequality form closed half-plane
 - a voronoi diagram is basically an intersection of lots of half-planes!! yay!!

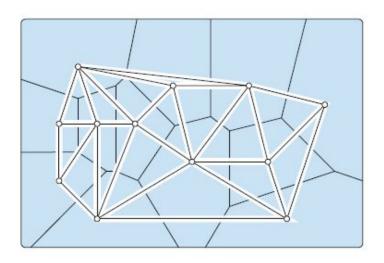
neighborhoods!!!!!



triangles!!!!!

from the voronoi diagram, we can construct the delaunay triangulation of the data

 basically connecting two sites by a straight edge if two voronoi regions share
 an edge

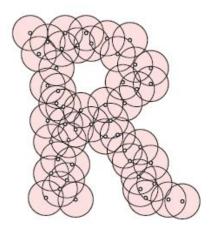


why do we care about triangles?!?!

• we can now describe data as a shape using concept of α -shapes!

constructing the α -shape:

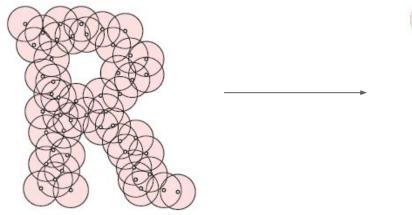
1) Let α be a fixed radius. Let $Dx(\alpha)$ be the closed disk with center x and radius α .

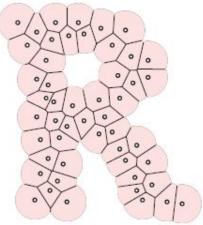


why do we care about triangles?!?!

2) overlay voronoi diagram with the union of the disks

• decomposing the triangulation





why do we care about triangles?!?!

3) triangulation = α -complex

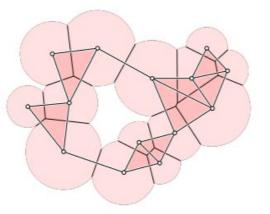


A(0) = set of sites $A(\infty) = Delaunay triangulation$

okay... so?????

- the takeaway is that the value of $\boldsymbol{\alpha}$ determines the derived shape of the data
 - you can have weighted diagrams, for example
 - Applications: protein models, space filling models of molecules





- filtration works in determining threshold value
 - determines which shape you should be looking at

triangulation of a space = **simplicial complex** (a data structure in defining topological spaces)

A set of k +1 points, {u0, u1, ..., uk}, is affinely independent if the k vectors $\{u1-u0, u2-u0, ..., uk-u0\}$ are linearly independent. A k-simplex is the convex hull of k+1 affinely independent points.

Therefore, we see how we get the shape of the data and from that, we can get the actual topological space we are working in.

DATA SET > TOPOLOGICAL SPACE

homology!!

- trying to calculate homology is the reason that we're doing all of this
- chain groups & boundary of a p-simplex -> homology
 - p-chain is a formal sum of p-simplices in a simplicial complex
 - boundary of a p-simplex is the set of (p-1)-faces
 - p-boundary is the boundary of a (p+1)-chain

Hp = Zp/Bp

Zp: subgroup of p-chains Bp: subgroup of p-boundaries

- output: betti number that tells how many holes of each dimension you have
 - rank of the homology group
 - number of independent components of different dimensions that are in the space

